3.2.68 \(\int \frac {c+d \sec (e+f x)}{\sqrt {a+a \sec (e+f x)}} \, dx\) [168]

Optimal. Leaf size=91 \[ \frac {2 c \text {ArcTan}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{\sqrt {a} f}-\frac {\sqrt {2} (c-d) \text {ArcTan}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {2} \sqrt {a+a \sec (e+f x)}}\right )}{\sqrt {a} f} \]

[Out]

2*c*arctan(a^(1/2)*tan(f*x+e)/(a+a*sec(f*x+e))^(1/2))/f/a^(1/2)-(c-d)*arctan(1/2*a^(1/2)*tan(f*x+e)*2^(1/2)/(a
+a*sec(f*x+e))^(1/2))*2^(1/2)/f/a^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {4005, 3859, 209, 3880} \begin {gather*} \frac {2 c \text {ArcTan}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a}}\right )}{\sqrt {a} f}-\frac {\sqrt {2} (c-d) \text {ArcTan}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {2} \sqrt {a \sec (e+f x)+a}}\right )}{\sqrt {a} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c + d*Sec[e + f*x])/Sqrt[a + a*Sec[e + f*x]],x]

[Out]

(2*c*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + a*Sec[e + f*x]]])/(Sqrt[a]*f) - (Sqrt[2]*(c - d)*ArcTan[(Sqrt[a]*T
an[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sec[e + f*x]])])/(Sqrt[a]*f)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {c+d \sec (e+f x)}{\sqrt {a+a \sec (e+f x)}} \, dx &=\frac {c \int \sqrt {a+a \sec (e+f x)} \, dx}{a}-(c-d) \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)}} \, dx\\ &=-\frac {(2 c) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{f}+\frac {(2 (c-d)) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{f}\\ &=\frac {2 c \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)}}\right )}{\sqrt {a} f}-\frac {\sqrt {2} (c-d) \tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {2} \sqrt {a+a \sec (e+f x)}}\right )}{\sqrt {a} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.31, size = 92, normalized size = 1.01 \begin {gather*} \frac {2 \left (\sqrt {2} c \text {ArcSin}\left (\sqrt {2} \sin \left (\frac {1}{2} (e+f x)\right )\right )+(-c+d) \text {ArcTan}\left (\frac {\sin \left (\frac {1}{2} (e+f x)\right )}{\sqrt {\cos (e+f x)}}\right )\right ) \cos \left (\frac {1}{2} (e+f x)\right )}{f \sqrt {\cos (e+f x)} \sqrt {a (1+\sec (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c + d*Sec[e + f*x])/Sqrt[a + a*Sec[e + f*x]],x]

[Out]

(2*(Sqrt[2]*c*ArcSin[Sqrt[2]*Sin[(e + f*x)/2]] + (-c + d)*ArcTan[Sin[(e + f*x)/2]/Sqrt[Cos[e + f*x]]])*Cos[(e
+ f*x)/2])/(f*Sqrt[Cos[e + f*x]]*Sqrt[a*(1 + Sec[e + f*x])])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(193\) vs. \(2(76)=152\).
time = 1.31, size = 194, normalized size = 2.13

method result size
default \(-\frac {\sqrt {\frac {a \left (\cos \left (f x +e \right )+1\right )}{\cos \left (f x +e \right )}}\, \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \left (c \sqrt {2}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}\, \sin \left (f x +e \right ) \sqrt {2}}{2 \cos \left (f x +e \right )}\right )+c \ln \left (-\frac {-\sin \left (f x +e \right ) \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}+\cos \left (f x +e \right )-1}{\sin \left (f x +e \right )}\right )-d \ln \left (-\frac {-\sin \left (f x +e \right ) \sqrt {-\frac {2 \cos \left (f x +e \right )}{\cos \left (f x +e \right )+1}}+\cos \left (f x +e \right )-1}{\sin \left (f x +e \right )}\right )\right )}{f a}\) \(194\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d*sec(f*x+e))/(a+a*sec(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/f*(a*(cos(f*x+e)+1)/cos(f*x+e))^(1/2)*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)*(c*2^(1/2)*arctanh(1/2*(-2*cos(f
*x+e)/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)/cos(f*x+e)*2^(1/2))+c*ln(-(-sin(f*x+e)*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(
1/2)+cos(f*x+e)-1)/sin(f*x+e))-d*ln(-(-sin(f*x+e)*(-2*cos(f*x+e)/(cos(f*x+e)+1))^(1/2)+cos(f*x+e)-1)/sin(f*x+e
)))/a

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sec(f*x+e))/(a+a*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: sign: argument cannot be imaginary
; found %i

________________________________________________________________________________________

Fricas [A]
time = 4.45, size = 337, normalized size = 3.70 \begin {gather*} \left [-\frac {\sqrt {2} {\left (a c - a d\right )} \sqrt {-\frac {1}{a}} \log \left (-\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {-\frac {1}{a}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 3 \, \cos \left (f x + e\right )^{2} - 2 \, \cos \left (f x + e\right ) + 1}{\cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) + 1}\right ) + 2 \, \sqrt {-a} c \log \left (\frac {2 \, a \cos \left (f x + e\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a \cos \left (f x + e\right ) - a}{\cos \left (f x + e\right ) + 1}\right )}{2 \, a f}, -\frac {2 \, \sqrt {a} c \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right ) - \frac {\sqrt {2} {\left (a c - a d\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a} \sin \left (f x + e\right )}\right )}{\sqrt {a}}}{a f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sec(f*x+e))/(a+a*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[-1/2*(sqrt(2)*(a*c - a*d)*sqrt(-1/a)*log(-(2*sqrt(2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt(-1/a)*cos(f
*x + e)*sin(f*x + e) - 3*cos(f*x + e)^2 - 2*cos(f*x + e) + 1)/(cos(f*x + e)^2 + 2*cos(f*x + e) + 1)) + 2*sqrt(
-a)*c*log((2*a*cos(f*x + e)^2 + 2*sqrt(-a)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*cos(f*x + e)*sin(f*x + e) +
 a*cos(f*x + e) - a)/(cos(f*x + e) + 1)))/(a*f), -(2*sqrt(a)*c*arctan(sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*
cos(f*x + e)/(sqrt(a)*sin(f*x + e))) - sqrt(2)*(a*c - a*d)*arctan(sqrt(2)*sqrt((a*cos(f*x + e) + a)/cos(f*x +
e))*cos(f*x + e)/(sqrt(a)*sin(f*x + e)))/sqrt(a))/(a*f)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {c + d \sec {\left (e + f x \right )}}{\sqrt {a \left (\sec {\left (e + f x \right )} + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sec(f*x+e))/(a+a*sec(f*x+e))**(1/2),x)

[Out]

Integral((c + d*sec(e + f*x))/sqrt(a*(sec(e + f*x) + 1)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d*sec(f*x+e))/(a+a*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(co

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {c+\frac {d}{\cos \left (e+f\,x\right )}}{\sqrt {a+\frac {a}{\cos \left (e+f\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d/cos(e + f*x))/(a + a/cos(e + f*x))^(1/2),x)

[Out]

int((c + d/cos(e + f*x))/(a + a/cos(e + f*x))^(1/2), x)

________________________________________________________________________________________